A. Journal Papers**V.H. Linh,**N.D. Truong, On convergence of continuous half-explicit Runge-Kutta methods for a class of delay differential-algebraic equations, accepted for publication in*Numerical Algorithms*, 2019. SCIE**V.H. Linh,**N.D. Truong, Stable Numerical Solution for a Class of Structured Differential-Algebraic Equations by Linear Multistep Methods,*Acta Mathematica Vietnamica*,**44**(2019), pp 955–976. ESCI/SCOPUS- M.V. Bulatov
**,**Block Difference Schemes of High Order for Stiff Linear Differential-Algebraic Equations,**V.H. Linh**, L.S. Solovarova,*Zh. Vychisl. Mat. Mat. Fiz*.,**59**(2019), No. 7, 1049-1057. SCIE English translation:*Russian J. Comp. Math. Math. Phys.*,**59**(2019), No. 7, 1000-1007. -
,**V.H. Linh,**N.D. Truong, M.V. Bulatov, Convergence analysis of linear multistep methods for a class of delay differential-algebraic equations*Bull. South Ural State Univ., Ser.: Math. Model., Prog. Comp. Soft.*,**11**(2018), no. 4, pp. 78-93. ESCI/SCOPUS **V.H. Linh,**N.D. Truong, Runge-Kutta Methods Revisited for a Class of Structured Strangeness-Free Differential-Algebraic Equations,*Electronic Transactions on Numerical Analysis*,**48**(2018), pp. 131–155. DOI: 10.1553/etna_vol48s131 SCIE**V.H. Linh,**N.T.T. Nga, D.D. Thuan, Exponential Stability and Robust Stability for Linear Time-Varying Singular Systems of Second Order Difference Equations,*SIAM J. Matrix Anal. & Appl.***39-1**(2018), pp. 204-233. SCI**V.H. Linh**, N.T.T. Nga, Bohl–Perron Type Stability Theorems for Linear Singular Difference Equations,*Vietnam Journal of Mathematics*,**46**(2018), pp. 437-451. ESCI/SCOPUS**V.H. Linh,**R. März, Adjoint Pairs of Differential-Algebraic Equations and Their Lyapunov Exponents,*J. Dynamics and Differential Equations,*SCI**29**(2017), 655-684.- N.H. Du,
**V.H. Linh**, N.T.T. Nga, On stability and Bohl exponent of linear singular systems of difference equations with variable coefficients,*J. Difference Equations and Applications*,**22**(2016), 1350-1377. SCIE - M.V. Bulatov,
**V.H. Linh**, L.S. Solovarova, On BDF-Based Multistep Schemes for Some Classes of Linear Differential-Algebraic Equations of Index at Most 2,*Acta Mathematica Vietnamica*,**41**(2016), 715-730. **V.H. Linh,**N.N. Tuan**:**Asymptotic integration of linear differential-algebraic equations**,***Electronic Journal of Qualitative Theory of Differential Equations*, 2014, No. 12, 1-17. SCIE**V.H. Linh**, V. Mehrmann: Efficient integration of strangeness-free non-stiff DAEs by half-explicit methods,*Journal of Computational and Applied Mathematics,*262 (2014), 346-360. SCI- N.H. Du,
**V.H. Linh**, V. Mehrmann, D.D. Thuan: Stability and robust stability of linear time-invariant delay differential-algebraic equations,*SIAM Matrix Anal. Appl*., 34(2013), 1631-1654. SCI **V.H. Linh**, V. Mehrmann: Approximation of spectral intervals and associated leading directions for linear differential-algebraic equation via smooth singular value decompositions, SIAM J. Numer. Anal.**49**, pp. 1810-1835, 2011. SCI**V.H. Linh**, V. Mehrmann, E. Van Vleck: QR Methods and Error Analysis for Computing Lyapunov and Sacker-Sell Spectral Intervals for Linear Differential-Algebraic Equations,*Adv. Comput. Math.*Volume 35, Numbers 2-4, 281-322, 2011. SCIE**V.H. Linh**, N.Q. Tuan, Maximal Stability Bound for Generalized Singularly Perturbed Systems,*Vietnam Journal of Mathematics*,**37**(2009) 339-356.- S. Campbell,
**V.H. Linh,**Stability criteria for differential-algebraic equations with multiple delays and their numerical solutions,*Applied Mathematics and Computation*,**208**(2009) 397–415. SCIE **V.H. Linh**, V. Mehrmann: Lyapunov, Bohl, and Sacker-Sell spectral intervals for differential-algebraic equations,*J. Dynamics and Differential Equations*(2009)**21**:153–194. SCIE Preprint version: Spectral Intervals for Differential-Algebraic Equations and Their Numerical Approximations, Preprint 402, DFG Research Center MATHEON, Berlin, 2007.- C-J.
Chyan, N.H.
Du and
**V.H. Linh**, On data-dependence of exponential stability and stability radii for linear time-varying differential-algebraic systems,*J. Differential Equations,***245***(*2008), 2078-2102. SCI - N.H.
Du,
**V.H. Linh**, Stability radii for linear time-varying differential algebraic equations with respect to dynamic perturbations, 2005,*J. Differential Equations*,**230**(2006), 579-599. SCI - N.H.
Du,
**V.H. Linh**, On the robust stability of implicit linear systems containing a small parameter in the leading term,*IMA Journal on Mathematical Control and Information*,**23**(2006), 67-74. SCIE **V.H. Linh**, On the robustness of asymptotic stability for a class of singularly perturbed systems with multiple delays,*Acta Mathematica Vietnamica*,**30**(2005), 137-151.- K.
Balla,
**V.H. Linh**, Adjoint pairs of differential-algebraic equations and Hamiltonian systems,*Applied Numerical Mathematics,***53**(2005), 131-148. SCI - N.H.
Du,
**V.H. Linh**, Implicit-system approach to the robust stability for a class of singularly perturbed linear systems,*Systems & Control Letters,***54**(2005), 33-41. SCI **V.H. Linh**, On the high order asymptotic solution of certain wave equations,*Miskolc Mathematical Notes*,**5**(2004), No.1, 57-69. (this is an improved variant of the paper "On asymptotic solution of radial wave differential equations, WP 99-2 (LORDS),*HAS Computer and Automation Research Institute*, Budapest, 1999.")- N.H.
Du, D.T. Lien,
**V.H. Linh**, On complex stability radii for implicit discrete-time systems*, Vietnam Journal of Mathematics*,**31**(2003), No.4, 475-488. - N.B.
Konyukhova,
**V.H. Linh**, I.B. Staroverova, On modifications of the method of phase functions as applied to singular problems in quantum physics,*Zh. Vychisl. Mat. Mat. Fiz*.,**39**(1999), No. 3, 1999, 492-522. SCIE English translation:*Russian J. Comp. Math. Math. Phys.*,**39**(1999), No. 3, 468-498. **V.H. Linh**, On some questions arising in numerical realization of amplitude-phase methods,*Numerical Algorithms*,**17**(1998), No. 1-2, 171-191. SCI**V.H. Linh**, Error estimates for the amplitude-phase method in the evaluation of radial wave functions*, Acta Sci. Math.*(Szeged),**63**(1997), 657-670.- K.
Balla,
**V.H. Linh**, On the simultaneous computation of Bessel functions of first and second kind,*Int. J. Computer Math. Applic*,**31**(1996), No. 4-5, 87-97. SCI
**V.H. Linh,**D.D. Thuan, Spectrum-Based Robust Stability Analysis of Linear Delay Differential-Algebraic Equations. In: Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory, Festschrift in Honor of Volker Mehrmann (Eds: P. Benner et.al.), Springer, pp. 533-557, 2015.- N.H. Du,
**V.H. Linh**, V. Mehrmann: Robust stability of differential-algebraic equations. In: Surveys in Differential-Algebraic Equations I (Editors: A. Ilchmann, T. Reis), 63-95, DAE-F, Springer, 2013. -
**V.H. Linh**, V. Mehrmann: Spectra and leading directions for differential-algebraic equations. In: Control and Optimization with Differential-Algebraic Constraints (Editors: Lorenz T. Biegler, Stephen L. Campbell and Volker Mehrmann), SIAM, pp. 59-78, 2012. -
**V.H. Linh**, V. Mehrmann: Spectral analysis for linear differential-algebraic equations, 10 pages, in: the*Proceedings for the 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications*, Dresden, Germany, May 25 - 28, 2010, DCDS Supplement 2011, 991-1000. **V.H. Linh**, Error estimations of approximate solution to certain second order linear differential equations, in:*Advances in Difference Equations*, (eds. S. Elaydi, I. Győri and G. Ladas), Gordon and Breach, London, 1997, 615-628.
**V.H. Linh:***Spectrum-based analysis for stability and robust stability of differential-algebraic equations***,**Habilitation Thesis, TU Berlin, 2013.-
**V.H. Linh**, Computation of radial wave functions by amplitude-phase methods,*Ph.D. Thesis, Eötvös Loránd University of Science*, Budapest, 1998.
- S. Campbell,
**V.H. Linh**, L. Petzold (2008) Differential-algebraic equations.*Scholarpedia*, 3(8):2849. **V.H. Linh**, N.H. Du, Stability radii for linear time-varying differential algebraic equations and their dependence on data, in:*Oberwolfach Reports 2006*, MFO Workshop on Differential Algebraic Equations, April 16-22, 2006, Oberwolfach, Germany, 3 pages.**V.H. Linh**, N.H. Du, Robust stability of differential algebraic equation with respect to dynamic perturbations, in:*On Frontiers of Basic Science,*Osaka University – Vietnam National University Hanoi Forum, September 27-29, 2005, Osaka University Press, 2006, 2 pages.**V.H. Linh**, On asymptotic solution of radial wave differential equations, WP 99-2 (LORDS),*HAS Computer and Automation Research Institute*, Budapest, 1999.**V.H. Linh**, On the numerical computation of an intergral formula containing Bessel functions, WP 94-3 (LORDS),*HAS Computer and Automation Research Institute*, Budapest, 1994.
Talks*Smooth matrix factorization and application in the approximation of spectral intervals for dynamical systems*, 14th Workshop on Optimization and Scientific Computing, April 21-23, 2016, Ba Vi, Vietnam. (Invited)*Spectrum-based robust stability analysis of linear delay differential-algebraic equations*, Conference in Honor of*Volker Mehrmann*on the Occasion of his 60th Birthday,*"Numerical Algebra, Matrix Theory, Differential-Algebraic Equations, and Control Theory"**, 6-9 May 2015, TU Berlin, Berlin, Germany. (Invited)**Stability and robust stability of linear time-invariant delay differential-algebraic equations,*International Conference on Numerical Linear Algebra and its Applications (NLAA 2013), IIT Guwahati, 15 - 18 January, 2013, Guwahati, India. (Invited)*Efficient integration of a class of matrix-valued non-stiff DAEs by half-explicit methods*, Numerical Solution of Differential and Differential-Algebraic Equations (NUMDIFF-13), September 10-14, 2012, Halle, Germany.*Spectral Intervals for Differential-algebraic Equations and their Numerical Approximation by QR and SVD Algorithms*,Householder Symposium XVIII, June 12-17, 2011, Tahoe City, California, USA.*Approximation of spectral intervals and associated leading directions for linear differential-algebraic systems via smooth singular value decompositions*, Workshop on Control and Optimization with Differential-Algebraic contraints, Banff, Canada, October 24-30, 2010.*Spectral intervals and their associated leading directions for DAEs,**Stability criteria for differential-algebraic equations with multiple delays and their numerical solutions,*4th Int. Conference on High Performance Scientific Computing, Hanoi, 2-6 March 2009.*Spectral intervals for DAEs and their numerical approximation*. Seminar at CSE group – University of California Santa Barbara, April, 2008.-
*Exponential stability and robust stability of differential-algebraic equations*. Invited talk at the Differential Equations Session, 7^{th}Vietnam Mathematical Congress, Qui Nhon, 2008. -
*Robustness Characterization of Exponential Stability**for parametrized DAEs.*Workshop on Structured Perturbations and Distance Problems in Matrix Computations, Bedlewo, Poland, 2007. http://www.math.tu-berlin.de/numerik/mt/bedlewo/anmtabelle.html
Last Revised: May 16, 2016 |